Annals of Fuzzy Mathematics and Informatics Volume 1, No. 1, (January 2011), pp. 1- 12 ISSN 2093-9310 http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

Fuzzy subsemigroups and fuzzy ideals with operators in semigroups

KUL HUR, YOUNG BAE JUN, HEE SIK KIM

Received 25 July 2010; Accepted 30 September 2010

ABSTRACT. Given a set Ω , the notion of an Ω -fuzzy subsemigroup in semigroups is given. Using fuzzy subsemigroups, an Ω -fuzzy subsemigroup is described. Conversely, a fuzzy subsemigroup is constructed by using an Ω -fuzzy subsemigroup. How the homomorphic images and inverse images of Ω -fuzzy subsemigroups become Ω -fuzzy subsemigroups is stated. The notion of an Ω -fuzzy left (right) ideal (an Ω -fuzzy bi-ideal, an Ω -fuzzy interior ideal) generated by an Ω -fuzzy set in semigroups is introduced. The depictions of them are examined.

2010 AMS Classification: 20M12, 08A72

Keywords: Ω -fuzzy subsemigroups, Ω -fuzzy left (right) ideal (generated by an Ω -fuzzy set), Ω -fuzzy bi-ideal ((generated by an Ω -fuzzy set), Ω -fuzzy interior ideal (generated by an Ω -fuzzy set)

Corresponding Author: Young Bae Jun (skywine@gmail.com)

1. INTRODUCTION

Hong et al. [1] and Kuroki [2, 3] have studied several properties of fuzzy left (right) ideals, fuzzy bi-ideals and fuzzy interior ideals in semigroups. For more other study on the fuzzy theory in semigroups, we refer to papers [4, 7, 9, 10]. In this paper, by using a set Ω , we define Ω -fuzzy subsemigroups, Ω -fuzzy left (right) ideals, Ω -fuzzy bi-ideals and Ω -fuzzy interior ideals in semigroups. We describe an Ω -fuzzy subsemigroup by using a fuzzy subsemigroup and vice versa. We state how the homomorphic images and inverse images of Ω -fuzzy subsemigroups become Ω -fuzzy subsemigroups. We deal with the notion of an Ω -fuzzy left (right) ideal (an Ω -fuzzy bi-ideal, an Ω -fuzzy interior ideal) generated by an Ω -fuzzy set in semigroups, and examine the depictions of them.

2. Preliminaries

A semigroup S is said to be *regular* if it satisfies:

$$(\forall a \in S) (\exists x \in S) (a = axa).$$

A semigroup S is said to be *completely regular* if it satisfies:

$$(\forall a \in S) \ (\exists x \in S) \ (a = axa, \ ax = xa).$$

By a subsemigroup of a semigroup S we mean a nonempty subset A of S such that $A^2 \subseteq A$, and by a *left (right) ideal* of S we mean a non-empty subset A of S such that $SA \subseteq A$ ($AS \subseteq A$). By two-sided ideal or simply ideal, we mean a nonempty subset of a semigroup S which is both a left and a right ideal of S. A subsemigroup A of a semigroup S is called a *bi-ideal* of S if $ASA \subseteq A$. A nonempty subset A of a semigroup S is called a *bi-ideal* of S if $ASA \subseteq A$ (see Lajos [6]).

A fuzzy set in S is a function μ from S into the unit interval [0, 1]. A fuzzy set μ in S is called a fuzzy subsemigroup of S if it satisfies

$$(\forall x, y \in S) \ (\mu(xy) \ge \min\{\mu(x), \mu(y)\}),$$

and is called a *fuzzy left* (*right*) *ideal* of S if

$$(\forall x, y \in S) (\mu(xy) \ge \mu(y) \quad (\mu(xy) \ge \mu(x))).$$

If μ is both a fuzzy left and a fuzzy right ideal of S, we say that μ is a *fuzzy ideal* of S. A fuzzy subsemigroup μ of S is called a *fuzzy bi-ideal* of S if it satisfies

 $(\forall w, x, y \in S) (\mu(xwy) \ge \min\{\mu(x), \mu(y)\}).$

3. Ω -fuzzy subsemigroups

In what follows let S and Ω denote a semigroup and a nonempty set, respectively, unless otherwise specified. A mapping $f: S \times \Omega \to [0, 1]$ is called an Ω -fuzzy set in S.

Definition 3.1. An Ω -fuzzy set f in S is called an Ω -fuzzy subsemigroup of S if it satisfies

$$(\forall \alpha \in \Omega) \ (\forall x, y \in S) \ (f(xy, \alpha) \ge \min\{f(x, \alpha), f(y, \alpha)\}).$$

Example 3.2. Consider a semigroup $S = \{a, b\}$ with the following Cayley table:

Let $\Omega = \{1, 2\}$ and let f be an Ω -fuzzy set in S defined by f(a, 1) = f(a, 2) = 1, f(b, 1) = 0.8 and f(b, 2) = 0.5. It is easy to verify that f is an Ω -fuzzy subsemigroup of S.

Example 3.3. Let $S^{\Omega} := \{u \mid u : \Omega \to S\}$. For any $u, v \in S^{\Omega}$, we define $(uv)(\alpha) = u(\alpha)v(\alpha)$ for all $\alpha \in \Omega$. Then S^{Ω} is a semigroup. Let μ be a fuzzy subsemigroup of S and let $\Phi : S^{\Omega} \times \Omega \to [0, 1]$ be a function defined by $\Phi(u, \alpha) = \mu(u(\alpha))$ for all $u \in S^{\Omega}$ and $\alpha \in \Omega$. Then Φ is an Ω -fuzzy subsemigroup of S^{Ω} .

Theorem 3.4. Let A be a subsemigroup of S^{Ω} . Then for any $\beta \in \Omega$, the set $A_{\beta} := \{u(\beta) \mid u \in A\}$

is a subsemigroup of S.

Proof. For any $\beta \in \Omega$, let $u(\beta), v(\beta) \in A_{\beta}$. Then $u(\beta)v(\beta) = (uv)(\beta) \in A_{\beta}$ since $uv \in A$. Hence A_{β} is a subsemigroup of S.

Proposition 3.5. If f is an Ω -fuzzy subsemigroup of S, then a fuzzy set $f_{\alpha} : S \to [0,1], \alpha \in \Omega$, given by $f_{\alpha}(x) = f(x, \alpha)$ for all $x \in S$ is a fuzzy subsemigroup of S.

Proof. Let $x, y \in S$. Then

$$f_{\alpha}(xy) = f(xy, \alpha) \ge \min\{f(x, \alpha), f(y, \alpha)\} = \min\{f_{\alpha}(x), f_{\alpha}(y)\}.$$

This completes the proof.

Proposition 3.6. If $f_{\alpha}, \alpha \in \Omega$, is a fuzzy subsemigroup of S, then a function $f : S \times \Omega \to [0,1], (x,\alpha) \mapsto f_{\alpha}(x)$, is an Ω -fuzzy subsemigroup of S.

Proof. For any $x, y \in S$, we have

$$f(xy,\alpha) = f_{\alpha}(xy) \ge \min\{f_{\alpha}(x), f_{\alpha}(y)\} = \min\{f(x,\alpha), f(y,\alpha)\}.$$

Hence f is an Ω -fuzzy subsemigroup of S.

Theorem 3.7. Let Φ be a fuzzy subsemigroup of S^{Ω} and let f be an Ω -fuzzy set in S defined by

$$f(x,\alpha) := \sup\{\Phi(u) \mid u \in S^{\Omega}, u(\alpha) = x\}$$

for all $x \in S$ and $\alpha \in \Omega$. Then f is an Ω -fuzzy subsemigroup of S.

Proof. Let $x, y \in S$ and $\alpha \in \Omega$. Then

$$\begin{split} f(xy,\alpha) &= \sup\{\Phi(u) \mid u \in S^{\Omega}, \, u(\alpha) = xy\}\\ &\geq \sup\{\Phi(uv) \mid u, v \in S^{\Omega}, \, u(\alpha) = x, \, v(\alpha) = y\}\\ &\geq \sup\{\min\{\Phi(u), \Phi(v) \mid u, v \in S^{\Omega}, \, u(\alpha) = x, \, v(\alpha) = y\}\\ &= \min\{\sup\{\Phi(u) \mid u \in S^{\Omega}, \, u(\alpha) = x\}, \, \sup\{\Phi(v) \mid v \in S^{\Omega}, \, v(\alpha) = y\}\}\\ &= \min\{f(x,\alpha), f(y,\alpha)\}. \end{split}$$

Hence f is an Ω -fuzzy subsemigroup of S.

 \square

Example 3.8. Let $S = \{a, b\}$ be a semigroup in Example 3.2 and let $\Omega := \{1, 2\}$. Then $S^{\Omega} := \{e, u, v, w\}$, where e(1) = e(2) = v(1) = w(2) = a and u(1) = u(2) = v(2) = w(1) = b, is a semigroup (in fact, a commutative group) under the following Cayley table:

Let Φ be a fuzzy set in S^{Ω} defined by $\Phi(e) = 0.9$, $\Phi(u) = \Phi(v) = 0.2$, and $\Phi(w) = 0.7$. Then Φ is a fuzzy subsemigroup of S^{Ω} . Thus we can obtain an Ω -fuzzy subsemigroup f of S as follows:

$$f(a,1) = \sup\{\Phi(\heartsuit) \mid \heartsuit \in S^{\Omega}, \,\heartsuit(1) = a\} = \sup\{\Phi(e), \Phi(v)\} = 0.9,$$

 $\begin{aligned} f(a,2) &= \sup\{\Phi(\heartsuit) \mid \heartsuit \in S^{\Omega}, \ \heartsuit(2) = a\} = \sup\{\Phi(e), \Phi(w)\} = 0.9, \\ f(b,1) &= \sup\{\Phi(\heartsuit) \mid \heartsuit \in S^{\Omega}, \ \heartsuit(1) = b\} = \sup\{\Phi(u), \Phi(w)\} = 0.7, \\ f(b,2) &= \sup\{\Phi(\heartsuit) \mid \heartsuit \in S^{\Omega}, \ \heartsuit(2) = b\} = \sup\{\Phi(u), \Phi(v)\} = 0.2. \end{aligned}$

Theorem 3.9. Let f be an Ω -fuzzy subsemigroup of S and let Φ be a fuzzy set in S^{Ω} defined by

$$\Phi(u) = \inf\{f(u(\alpha), \alpha) \mid \alpha \in \Omega\}$$

for all $u \in S^{\Omega}$. Then Φ is a fuzzy subsemigroup of S^{Ω} .

Proof. For any
$$u, v \in S^{\Omega}$$
, we have

$$\begin{aligned}
\Phi(uv) &= \inf\{f((uv)(\alpha), \alpha) \mid \alpha \in \Omega\} \\
&= \inf\{f(u(\alpha)v(\alpha), \alpha) \mid \alpha \in \Omega\} \\
&\geq \inf\{\min\{f(u(\alpha), \alpha), f(v(\alpha), \alpha) \mid \alpha \in \Omega\} \\
&= \min\{\inf\{f(u(\alpha), \alpha) \mid \alpha \in \Omega\}, \inf\{f(v(\alpha), \alpha) \mid \alpha \in \Omega\}\} \\
&= \min\{\Phi(u), \Phi(v)\}.
\end{aligned}$$

Thus Φ is a fuzzy subsemigroup of S^{Ω} .

Example 3.10. Let f be the Ω -fuzzy subsemigroup of S in Example 3.2 and let S^{Ω} be the commutative group in Example 3.8. Then we can induce a fuzzy subsemigroup of S^{Ω} as follows:

$$\begin{split} \Phi(e) &= \inf\{f(e(\alpha), \alpha) \mid \alpha \in \Omega\} = \inf\{f(e(1), 1), f(e(2), 2)\} \\ &= \inf\{f(a, 1), f(a, 2)\} = 1, \\ \Phi(u) &= \inf\{f(u(\alpha), \alpha) \mid \alpha \in \Omega\} = \inf\{f(u(1), 1), f(u(2), 2)\} \\ &= \inf\{f(b, 1), f(b, 2)\} = 0.5, \\ \Phi(v) &= \inf\{f(v(\alpha), \alpha) \mid \alpha \in \Omega\} = \inf\{f(v(1), 1), f(v(2), 2)\} \\ &= \inf\{f(a, 1), f(b, 2)\} = 0.5, \\ \Phi(w) &= \inf\{f(w(\alpha), \alpha) \mid \alpha \in \Omega\} = \inf\{f(w(1), 1), f(w(2), 2)\} \\ &= \inf\{f(b, 1), f(a, 2)\} = 0.8. \end{split}$$

Definition 3.11. Let $\varphi : S \to T$ be a homomorphism of semigroups and let g be an Ω -fuzzy set in T. Then the *inverse image* of g, denoted by $\varphi^{-1}[g]$, is the Ω -fuzzy set in S given by $\varphi^{-1}[g](x,\alpha) = g(\varphi(x),\alpha)$ for all $x \in S$ and $\alpha \in \Omega$. Conversely, let f be an Ω -fuzzy set in S. The *image* of f, written as $\varphi[f]$, is an Ω -fuzzy set in Tdefined by

$$\varphi[f](y,\alpha) = \begin{cases} \sup_{z \in \varphi^{-1}(y)} f(z,\alpha) & \text{if } \varphi^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise,} \end{cases}$$

for all $y \in T$ and $\alpha \in \Omega$, where $\varphi^{-1}(y) = \{x \mid \varphi(x) = y\}.$

Theorem 3.12. Let $\varphi : S \to T$ be a homomorphism of semigroups. If g is an Ω -fuzzy subsemigroup of T, then the inverse image $\varphi^{-1}[g]$ of g is an Ω -fuzzy subsemigroup of S.

Proof. Let $x, y \in S$ and $\alpha \in \Omega$. Then

$$\begin{split} \varphi^{-1}[g](xy,\alpha) &= g(\varphi(xy),\alpha) = g(\varphi(x)\varphi(y),\alpha) \\ &\geq \min\{g(\varphi(x),\alpha),g(\varphi(y),\alpha)\} = \min\{\varphi^{-1}[g](x,\alpha),\varphi^{-1}[g](y,\alpha)\}. \end{split}$$

Hence $\varphi^{-1}[g]$ is an Ω -fuzzy subsemigroup of S.

Theorem 3.13. Let $\varphi : S \to T$ be a homomorphism between semigroups S and T. If f is an Ω -fuzzy subsemigroup of S, then the image $\varphi[f]$ of f is an Ω -fuzzy subsemigroup of T.

Proof. We first prove that

(3.1)
$$\varphi^{-1}(y_1)\varphi^{-1}(y_2) \subseteq \varphi^{-1}(y_1y_2)$$

for all $y_1, y_2 \in T$. For, if $x \in \varphi^{-1}(y_1)\varphi^{-1}(y_2)$, then $x = x_1x_2$ for some $x_1 \in \varphi^{-1}(y_1)$ and $x_2 \in \varphi^{-1}(y_2)$. Since f is a homomorphism, it follows that $\varphi(x) = \varphi(x_1x_2) = \varphi(x_1)\varphi(x_2) = y_1y_2$ so that $x \in \varphi^{-1}(y_1y_2)$. Hence (3.1) holds. Now let $y_1, y_2 \in T$ and $\alpha \in \Omega$. Assume that $y_1y_2 \notin \operatorname{Im}(\varphi)$. Then $\varphi[f](y_1y_2, \alpha) = 0$. But if $y_1y_2 \notin \operatorname{Im}(\varphi)$, i.e., $\varphi^{-1}(y_1y_2) = \emptyset$, then $\varphi^{-1}(y_1) = \emptyset$ or $\varphi^{-1}(y_2) = \emptyset$ by (3.1). Thus $\varphi[f](y_1, \alpha) = 0$ or $\varphi[f](y_2, \alpha) = 0$, and so

$$[f](y_1y_2, \alpha) = 0 = \min\{\varphi[f](y_1, \alpha), \varphi[f](y_2, \alpha)\}.$$

Suppose that $\varphi^{-1}(y_1y_2) \neq \emptyset$. Then we should consider two cases as follows:

(i)
$$\varphi^{-1}(y_1) = \varnothing$$
 or $\varphi^{-1}(y_2) = \varnothing$,
(ii) $\varphi^{-1}(y_1) \neq \varnothing$ and $\varphi^{-1}(y_2) \neq \varnothing$.

For the case (i), we have $\varphi[f](y_1, \alpha) = 0$ or $\varphi[f](y_2, \alpha) = 0$, and so

$$\varphi[f](y_1y_2,\alpha) \ge 0 = \min\{\varphi[f](y_1,\alpha),\varphi[f](y_2,\alpha)\}.$$

Case (ii) implies from (3.1) that

 φ

$$\begin{aligned} \varphi[f](y_1y_2,\alpha) &= \sup_{z \in \varphi^{-1}(y_1y_2)} f(z,\alpha) \ge \sup_{z \in \varphi^{-1}(y_1)\varphi^{-1}(y_2)} f(z,\alpha) \\ &= \sup_{x_1 \in \varphi^{-1}(y_1), x_2 \in \varphi^{-1}(y_2)} f(x_1x_2,\alpha) \\ &\ge \sup_{x_1 \in \varphi^{-1}(y_1), x_2 \in \varphi^{-1}(y_2)} \min\{f(x_1,\alpha), f(x_2,\alpha)\} \\ &= \min\{\sup_{x_1 \in \varphi^{-1}(y_1)} f(x_1,\alpha), \sup_{x_2 \in \varphi^{-1}(y_2)} f(x_2,\alpha)\} \\ &= \min\{\varphi[f](y_1,\alpha), \varphi[f](y_2,\alpha)\}. \end{aligned}$$

Hence $\varphi[f](y_1y_2, \alpha) \ge \min\{\varphi[f](y_1, \alpha), \varphi[f](y_2, \alpha)\}$ for all $y_1, y_2 \in T$ and $\alpha \in \Omega$. This completes the proof. \Box

4. Ω -fuzzy bi-ideals and Ω -fuzzy interior ideals

Definition 4.1. An Ω -fuzzy set f in S is called an Ω -fuzzy left (resp. right) ideal of S if

$$(\forall x, y \in S) (\forall \alpha \in \Omega) (f(xy, \alpha) \ge f(y, \alpha) \text{ (resp. } f(xy, \alpha) \ge f(x, \alpha))).$$

If f is both an Ω -fuzzy left and an Ω -fuzzy right ideal of S, we say that f is an Ω -fuzzy ideal of S.

Let f be an Ω -fuzzy left (right) ideal of S and let Φ be the fuzzy set in S^{Ω} given in Theorem 3.9. For any $u, v \in S^{\Omega}$, we have

$$\Phi(uv) = \inf\{f((uv)(\alpha), \alpha) \mid \alpha \in \Omega\} \\ = \inf\{f(u(\alpha)v(\alpha), \alpha) \mid \alpha \in \Omega\} \\ \ge \inf\{f(v(\alpha), \alpha) \mid \alpha \in \Omega\} \\ = \Phi(v).$$

Similarly $\Phi(uv) \ge \Phi(u)$. Hence Φ is a fuzzy ideal of S^{Ω} .

Definition 4.2. An Ω -fuzzy set f in S is called an Ω -fuzzy bi-ideal of S if it satisfies

- (i) f is an Ω -fuzzy subsemigroup of S,
- (ii) $(\forall \alpha \in \Omega) (\forall x, y, z \in S) (f(xyz, \alpha) \ge \min\{f(x, \alpha), f(z, \alpha)\}).$

If f satisfies the condition (ii) only, we say that f is a generalized Ω -fuzzy bi-ideal of S. It is clear that every Ω -fuzzy bi-ideal of S is a generalized Ω -fuzzy bi-ideal of S, but not conversely as seen in the following example.

Example 4.3. (1) Let $S = \{a, b, c, d\}$ be a semigroup with the following multiplication table:

	a	b	c	d
a	a	a	a	a
b	a	a	a	a
c	a	a	b	a
d	a	a	b	b

Let $\phi : S \times \Omega \to [0, 1]$ be a fuzzy set in $S \times \Omega$ defined by $f(a, \alpha) = 0.5$, $f(b, \alpha) = f(d, \alpha) = 0$, and $f(c, \alpha) = 0.2$. Then f is a generalized Ω -fuzzy bi-ideal of S, which is not an Ω -fuzzy bi-ideal of S since

$$f(cc, \alpha) = f(b, \alpha) = 0 \geq 0.2 = \min\{f(c, \alpha), f(c, \alpha)\}.$$

(2) In Example 3.3, if μ is a fuzzy bi-ideal of S, then Φ is an Ω -fuzzy bi-ideal of S^{Ω} .

(3) The Ω -fuzzy subsemigroup f in Example 3.2 is not an Ω -fuzzy bi-ideal of S since

$$f(aba, 1) = f(b, 1) = 0.8 < 1 = f(a, 1) = \min\{f(a, 1), f(a, 1)\}.$$

Example 4.4. Let $\Omega := \{\mu \mid \mu \text{ is a fuzzy bi-ideal of } S\}$ and let f be a mapping from $S \times \Omega$ into [0,1] defined by $f(x,\mu) = \mu(x)$ for all $x \in S$ and $\mu \in \Omega$. Then f is an Ω -fuzzy bi-ideal of S.

Proposition 4.5. If $f_{\alpha}, \alpha \in \Omega$, is a fuzzy bi-ideal of S, then a function $\phi : S \times \Omega \rightarrow [0,1], (x,\alpha) \mapsto f_{\alpha}(x)$, is an Ω -fuzzy bi-ideal of S.

Proof. According to Proposition 3.6, f is an Ω -fuzzy subsemigroup of S. Let $x, y, z \in S$ and $\alpha \in \Omega$. Then

$$f(xyz,\alpha) = f_{\alpha}(xyz) \ge \min\{f_{\alpha}(x), f_{\alpha}(z)\} = \min\{f(x,\alpha), f(z,\alpha)\}.$$

This completes the proof.

Proposition 4.6. Let f be an Ω -fuzzy bi-ideal of S and $\alpha \in \Omega$. Define a function $f_{\alpha}: S \to [0,1]$ by $f_{\alpha}(x) = f(x,\alpha)$ for all $x \in S$. Then f_{α} is a fuzzy bi-ideal of S.

Proof. According to Proposition 3.5, f_{α} is a fuzzy subsemigroup of S. For any $x, y, z \in S$ we have

$$f_{\alpha}(xyz) = f(xyz, \alpha) \ge \min\{f(x, \alpha), f(y, \alpha)\} = \min\{f_{\alpha}(x), f_{\alpha}(z)\},\$$

and so f_{α} is a fuzzy bi-ideal of S.

Theorem 4.7. If S is a group, then every Ω -fuzzy bi-ideal of S is a constant function.

Proof. Let f be an Ω -fuzzy bi-ideal of S. For any $x \in S$ and $\alpha \in \Omega$, we get

$$\begin{aligned} f(x,\alpha) &= f(exe,\alpha) \ge \min\{f(e,\alpha), f(e,\alpha)\} = f(e,\alpha) \\ &= f(ee,\alpha) = f((xx^{-1})(x^{-1}x), \alpha) = f(x(x^{-1}x^{-1})x), \alpha) \\ &\ge \min\{f(x,\alpha), f(x,\alpha)\} = f(x,\alpha), \end{aligned}$$

where e is the identity element of S. Hence $f(x, \alpha) = f(e, \alpha)$, and f is a constant function.

Theorem 4.8. If A is a bi-ideal of S, then the characteristic function $\chi_{A \times \Omega}$ of $A \times \Omega$ is an Ω -fuzzy bi-ideal of S.

Proof. Let $\alpha \in \Omega$ and let $x, y, z \in S$. If $x \notin A$ or $y \notin A$, then $(x, \alpha) \notin A \times \Omega$ or $(y, \alpha) \notin A \times \Omega$. Hence

$$\chi_{A \times \Omega}(xy, \alpha) \ge 0 = \min\{\chi_{A \times \Omega}(x, \alpha), \chi_{A \times \Omega}(y, \alpha)\}.$$

If $x \in A$ and $y \in A$, then $xy \in A$ and so

$$\chi_{A \times \Omega}(xy, \alpha) = \min\{\chi_{A \times \Omega}(x, \alpha), \chi_{A \times \Omega}(y, \alpha)\}.$$

Now if $x \in A$ and $z \in A$, then we have $\chi_{A \times \Omega}(x, \alpha) = \chi_{A \times \Omega}(z, \alpha) = 1$. Since A is a bi-ideal of S, it follows that $(xyz, \alpha) \in ASA \times \Omega \subseteq A \times \Omega$ so that

$$\chi_{A \times \Omega}(xyz, \alpha) = 1 = \min\{\chi_{A \times \Omega}(x, \alpha), \chi_{A \times \Omega}(z, \alpha)\}.$$

If $x \notin A$ or $z \notin A$, then $\chi_{A \times \Omega}(x, \alpha) = 0$ or $\chi_{A \times \Omega}(z, \alpha) = 0$. Thus

$$\chi_{A \times \Omega}(xyz, \alpha) \ge 0 = \min\{\chi_{A \times \Omega}(x, \alpha), \chi_{A \times \Omega}(z, \alpha)\}.$$

Therefore $\chi_{A \times \Omega}$ is an Ω -fuzzy bi-ideal of S.

Theorem 4.9. Let A be a subset of S such that the characteristic function $\chi_{A \times \Omega}$ of $A \times \Omega$ is a generalized Ω -fuzzy bi-ideal of S. Then A is a generalized bi-ideal of S.

Proof. Let $\alpha \in \Omega$, $x, z \in A$ and $y \in S$. Then $\chi_{A \times \Omega}(x, \alpha) = 1 = \chi_{A \times \Omega}(z, \alpha)$. Since $\chi_{A \times \Omega}$ is a generalized Ω -fuzzy bi-ideal of S, we have

$$\chi_{A \times \Omega}(xyz, \alpha) \ge \min\{\chi_{A \times \Omega}(x, \alpha), \chi_{A \times \Omega}(z, \alpha)\} = 1$$

and so $\chi_{A \times \Omega}(xyz, \alpha) = 1$. Thus $(xyz, \alpha) \in A \times \Omega$ and hence $xyz \in A$. This shows that A is a generalized bi-ideal of S.

We give a condition for a generalized Ω -fuzzy bi-ideal to be an Ω -fuzzy bi-ideal.

Theorem 4.10. Every generalized Ω -fuzzy bi-ideal of a regular semigroup S is an Ω -fuzzy bi-ideal of S.

Proof. Let f be a generalized Ω -fuzzy bi-ideal of a regular semigroup S and let $\alpha \in \Omega$ and $x, y \in S$. Since S is regular, it follows that there exists $a \in S$ such that y = yay so that

$$f(xy,\alpha) = f(x(yay),\alpha) = f(x(ya)y,\alpha) \ge \min\{f(x,\alpha), f(y,\alpha)\}.$$

This means that f is an Ω -fuzzy subsemigroup of S, and so it is an Ω -fuzzy bi-ideal of S.

Proposition 4.11. Let f be an Ω -fuzzy bi-ideal of S. If S is completely regular, then

$$(\forall x \in S) (\forall \alpha \in \Omega) (f(x, \alpha) = f(x^2, \alpha)).$$

Proof. Let $\alpha \in \Omega$ and let x be any element of S. Then there exists $a \in S$ such that $x = x^2 a x^2$, which implies that

$$\begin{aligned} f(x,\alpha) &= f(x^2ax^2,\alpha) \geq \min\{f(x^2,\alpha), f(x^2,\alpha)\} \\ &= f(x^2,\alpha) \geq \min\{f(x,\alpha), f(x,\alpha)\} = f(x,\alpha) \end{aligned}$$

so that $f(x, \alpha) = f(x^2, \alpha)$. This completes the proof.

Lemma 4.12. [8, p.105] For a semigroup S the following conditions are equivalent:

- (i) S is completely regular.
- (ii) S is a union of groups.
- (iii) $a \in a^2 S a^2$ for all $a \in S$.

Lemma 4.13. [5, Theorem 1] A semigroup S is a semilattice of groups if and only if the set of all bi-ideals of S is a semilattice under the multiplication of subsets.

Proposition 4.14. Let f be an Ω -fuzzy bi-ideal of S. If S is a semilattice of groups, then

$$(\forall x, y \in S) (\forall \alpha \in \Omega) (f(x, \alpha) = f(x^2, \alpha), f(xy, \alpha) = f(yx, \alpha))$$

Proof. If S is a semilattice of groups, then S is a union of groups and so S is completely regular by Lemma 4.12. Hence $f(x, \alpha) = f(x^2, \alpha)$ for all $x \in S$ and $\alpha \in \Omega$ by Proposition 4.11. Using Lemma 4.13, we have

$$\begin{aligned} (xy)^3 &= (xyx)(yxy) \in B[xyx]B[yxy] = B[yxy](B[xyx])^2 \\ &\subseteq B[yxy]SB[xyx] \subseteq yxySxyx \subseteq yxSyx \end{aligned}$$

for all $x, y \in S$, where B[a] means the principal bi-ideal of S generated by $a \in S$. This implies that there exists $a \in S$ such that $(xy)^3 = (yx)a(yx)$. Thus for any $\alpha \in \Omega$, we get

$$f(xy,\alpha) = f((xy)^3,\alpha) = f((yx)a(yx),\alpha)$$

$$\geq \min\{f(yx,\alpha), f(yx,\alpha)\} = f(yx,\alpha).$$

Similarly, we obtain $f(yx, \alpha) \ge f(xy, \alpha)$. Hence $f(xy, \alpha) = f(yx, \alpha)$, completing the proof.

Definition 4.15. An Ω -fuzzy set f in S is called an Ω -fuzzy interior ideal of S if it satisfies

- (i) f is an Ω -fuzzy subsemigroup of S,
- (ii) $(\forall \alpha \in \Omega) (\forall w, x, y \in S) (f(xwy, \alpha) \ge f(w, \alpha))$.

If f is an Ω -fuzzy bi-ideal (resp. Ω -fuzzy interior ideal) of S, then the fuzzy set Φ in S^{Ω} given in Theorem 3.9 is a fuzzy bi-ideal (resp. fuzzy interior ideal) of S^{Ω} .

Theorem 4.16. Let μ be a nonconstant Ω -fuzzy subsemigroup (resp. Ω -fuzzy left (right) ideal, Ω -fuzzy bi-ideal) of S and let a be an element of S such that $\mu(a, \alpha) > \mu(x, \alpha)$ for all $x \in S$ and $\alpha \in \Omega$. Then an Ω -fuzzy set ν in S given by $\nu(x, \alpha) = \frac{\mu(x, \alpha)}{\mu(a, \alpha)}$ for all $x \in S$ and $\alpha \in \Omega$ is an Ω -fuzzy subsemigroup (resp. Ω -fuzzy left (right) ideal, Ω -fuzzy bi-ideal) of S and $\nu(a, \alpha) = 1$.

Proof. Straightforward.

Theorem 4.17. Every Ω -fuzzy ideal is both an Ω -fuzzy bi-ideal and an Ω -fuzzy interior ideal.

Proof. Let f be an Ω -fuzzy ideal of S. Obviously f is an Ω -fuzzy subsemigroup of S. Let $x, y, z \in S$ and $\alpha \in \Omega$. Then

$$\begin{split} f(xyz,\alpha) &= f((xy)z,\alpha) \geq f(z,\alpha), \\ f(xyz,\alpha) &= f(x(yz),\alpha) \geq f(x,\alpha), \end{split}$$

and so $f(xyz, \alpha) \ge \min\{f(x, \alpha), f(z, \alpha)\}$. Thus f is an Ω -fuzzy bi-ideal of S. Now let $x, y, w \in S$ and $\alpha \in \Omega$. Then

$$f(xwy,\alpha) \ge f(wy,\alpha) \ge f(w,\alpha)$$

and thus f is an Ω -fuzzy interior ideal of S.

If S has the identity e, we write it by S^e .

Theorem 4.18. Every Ω -fuzzy interior ideal of S^e is an Ω -fuzzy ideal of S^e .

Proof. Let f be an Ω -fuzzy interior ideal of S^e and let $x, y \in S$ and $\alpha \in \Omega$. Then

$$\begin{split} f(xy,\alpha) &= f(xye,\alpha) \geq f(y,\alpha), \\ f(xy,\alpha) &= f(exy,\alpha) \geq f(x,\alpha), \end{split}$$

which shows that f is an Ω -fuzzy ideal of S^e .

Let f be an Ω -fuzzy set in S. The smallest Ω -fuzzy left (resp. right) ideal of S containing f is called an Ω -fuzzy left (resp. right) ideal generated by f and is denoted by $\langle f \rangle_l$ (resp. $\langle f \rangle_r$).

Theorem 4.19. Let f be an Ω -fuzzy set in S^e . Then

$$\langle f \rangle_l(w, \alpha) = \sup\{f(x_2, \alpha) \mid w = x_1 x_2, x_1, x_2 \in S^e\}$$

and

$$\langle f \rangle_r(w,\alpha) = \sup\{f(x_1,\alpha) \mid w = x_1x_2, x_1, x_2 \in S^e\}$$

for all $w \in S^e$ and $\alpha \in \Omega$.

Proof. Let g be an Ω -fuzzy set in S^e given by

$$g(w, \alpha) = \sup\{f(x_2, \alpha) \mid w = x_1 x_2, x_1, x_2 \in S^e\}$$

for all $w \in S^e$ and $\alpha \in \Omega$. Then

$$g(w,\alpha) \ge \sup\{f(w,\alpha) \mid w = ew\} = f(w,\alpha).$$

Now we have

 $g(xy, \alpha) = \sup\{f(x_2, \alpha) \mid xy = x_1x_2\} \\ \ge \sup\{f(z_2, \alpha) \mid xy = (xz_1)z_2, y = z_1z_2\} \\ \ge \sup\{f(z_2, \alpha) \mid y = z_1z_2\} = g(y, \alpha),$

which means that g is an Ω -fuzzy left ideal of S^e . Let h be an Ω -fuzzy left ideal of S^e containing f. Then $f(x, \alpha) \leq h(x, \alpha)$ for all $x \in S^e$ and $\alpha \in \Omega$, and hence

$$g(w, \alpha) = \sup\{f(x_2, \alpha) \mid w = x_1 x_2\} \le \sup\{h(x_2, \alpha) \mid w = x_1 x_2\} \le \sup\{h(x_1 x_2, \alpha) \mid w = x_1 x_2\} = h(w, \alpha) 9$$

for all $w \in S^e$ and $\alpha \in \Omega$. Therefore we have

$$\langle f \rangle_l(w, \alpha) = \sup\{f(x_2, \alpha) \mid w = x_1 x_2, x_1, x_2 \in S^e\}$$

for all $w \in S^e$ and $\alpha \in \Omega$. Similarly we conclude that

$$\langle f \rangle_r(w, \alpha) = \sup\{f(x_1, \alpha) \mid w = x_1 x_2, x_1, x_2 \in S^e\}$$

for all $w \in S^e$ and $\alpha \in \Omega$.

Let f be an Ω -fuzzy set in S. The smallest Ω -fuzzy interior ideal of S containing f is called an Ω -fuzzy interior ideal generated by f and is denoted by $\langle f \rangle_I$.

Theorem 4.20. Let f be an Ω -fuzzy set in S^e. Then

$$\langle f \rangle_I(w,\alpha) = \sup\{f(x_2,\alpha) \mid w = x_1 x_2 x_3\}$$

for all $w \in S^e$ and $\alpha \in \Omega$.

Proof. Let g be an Ω -fuzzy set in S^e given by

$$g(w, \alpha) = \sup\{f(x_2, \alpha) \mid w = x_1 x_2 x_3\}.$$

For any $x, y \in S^e$ and $\alpha \in \Omega$, we have

$$g(xy, \alpha) = \sup\{f(x_2, \alpha) \mid xy = x_1x_2x_3\} \\ \ge \sup\{f(z_2, \alpha) \mid xy = z_1z_2(z_3y), x = z_1z_2z_3\} \\ = g(x, \alpha).$$

Similarly we get $g(xy, \alpha) \ge g(y, \alpha)$. Hence

$$g(xy,\alpha) \ge \min\{g(x,\alpha), g(y,\alpha)\},\$$

and so g is an Ω -fuzzy subsemigroup of S^e . For any $x \in S^e$ and $\alpha \in \Omega$, we obtain

$$g(x,\alpha) = \sup\{f(x_2,\alpha) \mid x = x_1 x_2 x_3\}$$

$$\geq \sup\{f(x,\alpha) \mid x = exe\} = f(x,\alpha),$$

that is, g contains f. Let $w, x, y \in S^e$ and $\alpha \in \Omega$. Then

$$g(xwy, \alpha) = \sup\{f(x_2, \alpha) \mid xwy = x_1x_2x_3\} \\ \ge \sup\{f(z_2, \alpha) \mid xwy = (xz_1)z_2(z_3y), w = z_1z_2z_3\} \\ = q(w, \alpha).$$

Thus g is an Ω -fuzzy interior ideal of S^e containing f. Let h be an Ω -fuzzy interior ideal of S^e containing f. Then

$$g(w, \alpha) = \sup\{f(x_2, \alpha) \mid w = x_1 x_2 x_3\} \\ \leq \sup\{h(x_2, \alpha) \mid w = x_1 x_2 x_3\} \\ \leq \sup\{h(x_1 x_2 x_3, \alpha) \mid w = x_1 x_2 x_3\} \\ = h(w, \alpha).$$

This completes the proof.

Let f be an Ω -fuzzy set in S. The smallest Ω -fuzzy bi-ideal of S containing f is called an Ω -fuzzy bi-ideal generated by f and is denoted by $\langle f \rangle_B$.

Theorem 4.21. Let f be an Ω -fuzzy set in S^e such that $f(e, \alpha) \ge f(x, \alpha)$ for all $x \in S$ and $\alpha \in \Omega$. Then

$$\langle f \rangle_B(w,\alpha) = \sup\{\min\{f(x_1,\alpha), f(x_3,\alpha)\} \mid w = x_1 x_2 x_3\}$$

for all $w \in S^e$ and $\alpha \in \Omega$.

Proof. Let g be an Ω -fuzzy set in S^e given by

$$g(w, \alpha) = \sup\{\min\{f(x_1, \alpha), f(x_3, \alpha)\} \mid w = x_1 x_2 x_3\}.$$

For any $w \in S^e$ and $\alpha \in \Omega$,

$$g(w, \alpha) = \sup\{\min\{f(x_1, \alpha), f(x_3, \alpha)\} \mid w = x_1 x_2 x_3\}$$

$$\geq \sup\{\min\{f(e, \alpha), f(w, \alpha)\} \mid w = eew\}$$

$$= \sup\{f(w, \alpha) \mid w = eew\} = f(w, \alpha),$$

and so g contains f. Let $x, y, z \in S^e$ and $\alpha \in \Omega$. Then

$$g(x,\alpha) = \sup\{\min\{f(x_1,\alpha), f(x_3,\alpha)\} \mid x = x_1 x_2 x_3\},\$$

$$g(z,\alpha) = \sup\{\min\{f(z_1,\alpha), f(z_3,\alpha)\} \mid z = z_1 z_2 z_3\},\$$

and hence

$$\min\{g(x, \alpha), g(z, \alpha)\} \\ = \sup\{\min\{\min\{f(x_1, \alpha), f(x_3, \alpha)\}, \min\{f(z_1, \alpha), f(z_3, \alpha)\}\} \mid x = x_1 x_2 x_3, z = z_1 z_2 z_3\} \\ = \sup\{\min\{f(x_1, \alpha), f(x_3, \alpha), f(z_1, \alpha), f(z_3, \alpha)\} \mid x = x_1 x_2 x_3, z = z_1 z_2 z_3\} \\ \le \sup\{\min\{f(x_1, \alpha), f(z_3, \alpha)\} \mid xyz = x_1 (x_2 x_3 y z_1 z_2) z_3, x = x_1 x_2 x_3, z = z_1 z_2 z_3\} \\ \le \sup\{\min\{f(u_1, \alpha), f(u_3, \alpha)\} \mid xyz = u_1 u_2 u_3\} = g(xyz, \alpha).$$

If we take y = e, then $g(xz, \alpha) \ge \min\{g(x, \alpha), g(z, \alpha)\}$. Hence g is an Ω -fuzzy bi-ideal of S^e . Let h be an Ω -fuzzy bi-ideal of S^e containing f. Then

$$g(w, \alpha) = \sup\{\min\{f(x_1, \alpha), f(x_3, \alpha)\} \mid w = x_1 x_2 x_3\} \\ \leq \sup\{\min\{h(x_1, \alpha), h(x_3, \alpha)\} \mid w = x_1 x_2 x_3\} \\ \leq \sup\{\min\{h(x_1 x_2 x_3, \alpha)\} \mid w = x_1 x_2 x_3\} \\ = h(w, \alpha)$$

for all $w \in S^e$ and $\alpha \in \Omega$. This completes the proof.

Let f be an $\Omega\text{-fuzzy set in }S^e$ and assume that S^e is regular in Theorem 4.21. Then

$$g(w,\alpha) = \sup\{\min\{f(x_1,\alpha), f(x_3,\alpha)\} \mid w = x_1x_2x_3\}$$

$$\geq \sup\{\min\{f(w,\alpha), f(w,\alpha)\} \mid w = wxw\}$$

$$= f(w,\alpha).$$

Hence we have the following theorem.

Theorem 4.22. Let f be an Ω -fuzzy set in S^e . If S^e is regular, then $\langle f \rangle_B(w, \alpha) = \sup\{\min\{f(x_1, \alpha), f(x_3, \alpha)\} \mid w = x_1 x_2 x_3\}$

for all $w \in S^e$ and $\alpha \in \Omega$.

5. Conclusions

In this paper we have defined the notions of Ω -fuzzy subsemigroups, Ω -fuzzy left (right) ideals, Ω -fuzzy bi-ideals and Ω -fuzzy interior ideals in semigroups by by using a set Ω . We have described an Ω -fuzzy subsemigroup by using a fuzzy subsemigroup and vice versa. We have stated how the homomorphic images and inverse images of Ω -fuzzy subsemigroups become Ω -fuzzy subsemigroups. We have dealt with the notion of an Ω -fuzzy left (right) ideal (an Ω -fuzzy bi-ideal, an Ω -fuzzy interior ideal) generated by an Ω -fuzzy set in semigroups, and examined the depictions of them. Our future work will focus on studying the intuitionistic Ω -fuzzy structure of several ideals in semigroups.

Acknowledgements. The second author, Y. B. Jun, is an Executive Research Worker of Educational Research Institute in Gyeongsang National University.

References

- S. M. Hong, Y. B. Jun and J. Meng, Fuzzy interior ideals in semigroups, Indian J. Pure Appl. Math. 26 (1995) 859–863.
- [2] N. Kuroki, Fuzzy semiprime ideals in semigroups, Fuzzy Sets and Systems 8 (1982) 71–79.
- [3] N. Kuroki, On fuzzy semigroups, Inform. Sci. 53 (1991) 203-236.
- [4] N. Kuroki, Fuzzy generalized bi-ideals in semigroups, Inform. Sci. 66 (1992) 235–243.
- [5] S. Lajos, A note on semilattice of groups, Acta. Sci. Math. (Szeged) 33 (1972) 315–317.
- [6] S. Lajos, On generalized bi-ideals in semigroups, Coll. Math. Soc. Janos Bolyai, 20, Algebraic Theory of Semigroups, (G. Pollak, Ed.) North-Holland (1979) 335–340.
- [7] Z. W. Mo and X. P. Wang, On pointwise depiction of fuzzy regularity of semigroups, Inform. Sci. 74 (1993) 265–274.
- [8] M. Petrich, Introduction to Semigroups, Columbus, Ohio 1973.
- [9] M. A. Samhan, Fuzzy congruences on semigroups, Inform. Sci. 74 (1993) 165–175.
- [10] X. P. Wang and W. J. Liu, Fuzzy regular subsemigroups in semigroups, Inform. Sci. 68 (1993) 225–231.

<u>KUL HUR</u> (kulhur@wonkwang.ac.kr) – Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan 570-749, Korea

<u>YOUNG BAE JUN</u> (skywine@gmail.com) – Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea

<u>HEE SIK KIM</u> (heekim@hanyang.ac.kr) – Department of Mathematics, Hanyang University, Seoul 133-791, Korea